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Abstract

From representing moduli spaces to a central role in string theory: orbifolds are a vital tool in many

areas of pure mathematics and mathematical physics. In this talk we aim to give an algebraic construction

that will nevertheless gives us a quite tangible geometric object in the end. The talk mainly follows [Moe02]

and [AK08].

1 Motivation
Taking quotients by groups is commonplace in mathematics. In topology the practice is justified by this

well known theorem:

Theorem 1.1. Let - be a Hausdorff space and � a topological group acting properly on -. Then -�� is Hausdorff.

However we sometimes like to work with more concrete structures than Hausdorff spaces. The nicest type

of space is maybe the (smooth) manifold. And there we have:

Theorem 1.2. Let" be a smooth manifold and � a Lie group acting smoothly, freely and properly on". Then -��
is a smooth manifold.

Keep in mind that any discrete or finite group is a Lie group. If we compare these two theorems we will

find that the property freely has somehow slipped into the manifold version of the theorem. And it is not

there for no reason.

Example 1.1. Let " = R3
and Z2 ≔

Z�
2Z acting on " by the proper action

= • G = (−1)=G.
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Now take - = "�Z2

. Can we see what this space looks like? First notice that

(2

�Z2

� RP2.

So we know our space has RP2
as a subspace. And we can now think of - as a kind of “open-ended” cone

over RP2
with the pointy end being [0]. This is clearly contractible. If it were a 3-manifold, removing a point

would not change the fundamental group. But if we remove the pointy end we get something homotopic

to (0,∞) × RP2
. Clearly this has a non-trivial fundamental group. So - is not a manifold!

However it seems wasteful not to consider spaces like the one in the example. While they are not really

manifolds they seem similar enough that one might be able to save a lot of the results about manifolds.

The most obvious way to study them would be to just alter the definition of a manifold so that it locally

resembles
R=��G for a suitable group �G . This process is possible but tedious and I want to present a

different approach. But if we keep this idea in mind we will see that is is exactly what we end up with in

the end.

2 Groupoid Approach
We will for now leave the realm of geometry and instead pursue a more algebraic path which will lead to

an even more general and (in my opinion) elegant definition of an orbifold. In order to give this definition

we will use category theory and therefore we will now recall some of its basic notions:

2.1 Category Theory Basics
Definition 2.1. A category C consists of

1. a class of objects Ob(C)

2. for any pair G, H ∈ Ob(C) a class of morphisms MorC(G, H)

3. for any triple G, H, I ∈ Ob(C) a composition rule MorC(H, I) ×MorC(G, H) →MorC(G, I) denoted by ◦

such that:

1. For every G ∈ Ob(C) there exists an id ∈ MorC(G, G) s.t. for any H ∈ Ob(C), ) ∈ MorC(G, H) and
# ∈ MorC(H, G) it holds id ◦) = ) and # ◦ id = #.

2. The composition is associative.

Remark. As is already suggested by the fact that set and class are two distinct words they do in fact denote

different concepts, class being the more general one. Indeed the fact that not all classes are sets is the

secret weapon that makes it possible to define categories such as Set and Top, which would otherwise be

ill-defined. However the usage of classes also brings with it all sorts of problem and a certain detachment

from the real world (of everyday mathematics). In the following we will confine ourselves to so-called small
categories and leave it to others to worry about the merits of large categories.

Definition 2.2. A category C is called small category if Ob(C) is a set and for any G, H ∈ Ob(C) it holds that
MorC(G, H) is also a set.

Given a morphism 5 ∈ MorC(G, H)we call G the source and H the target of 5 .

Definition 2.3. A (covariant) functor from a category C to a category D is a mapping sending every

object G ∈ Ob(C) to an object �(G) ∈ Ob(D) and each morphism # ∈ MorC(G, H) to a morphism �(#) ∈
MorD(�(G), �(H)) such that compositions and identities are preserved.

Definition 2.4. A morphism # ∈ MorC(G, H) is called an isomorphism if there exists a morphism ) ∈
MorC(H, G) s.t. ) ◦ # = idG and # ◦ ) = 83H .
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Definition 2.5. A small category is called groupoid if all its morphisms are isomorphisms.

The name suggests a non-trivial connection to groups and indeed the next theorem will show that

groupoids are in some sense a generalization of groups.

Theorem 2.1. Let (�, ◦�) be a group. Then we associate with � the small category G defined by
Ob(G) = {pt}

MorG(pt, pt) = �
◦ = ◦� .

Then G is a groupoid.
Proof. This follows directly from the definition. �

Theorem 2.2. Let G be a groupoid and G ∈ Ob(G) any object. Then (MorG(G, G), ◦) is a group.
Proof. Since G is a small category MorG(G, G) is a nonempty set because id ∈ MorG(G, G). The group

multiplication ◦ is associative for the same reason. We have a neutral element id ∈ MorG(G, G) and because

G is a groupoid any element has an inverse. �

We can see this theorem as somehow saying that a groupoid is “locally” like a group. To get a better

grip on groupoids here is a more non-trivial example:

Example 2.1. Define

Ob(G) = {{0}, {1,−1}, {2,−2}}

MorG(=, <) =


{id, G ↦→ −G} if = = < = {0}
{id} otherwise with = = <

∅ else

.

Where the composition is given by multiplication. This groupoid can be visualized by the following graph:

0 ±1 ±2

−1

1 1 1

Here we can see the local group structure quite well. But we should also keep this example in mind:

Example 2.2. Let ( be any set. Define

Ob(S) = (

MorS(G, H) =
{
{pt} if G = H

∅ else

.

This is called a discrete groupoid.
So we see that the structure of a groupoid per se is rather flexible. The last fact about groupoids for now is

the following definition of a kind of general quotient object that can be given a groupoid structure.

Definition 2.6. Let - be a set and � be a group acting on -. Then we define

Ob(-//�) = -
Mor-//�(G, H) = {(6, G) | G = 6 • H}

We call -//� an action groupoid.
Remark. Using this definition we can get a groupoid similar to example 2.1 in another way:

{−2,−1, 0, 1, 2}//Z�
2Z

But note that we do not get the same groupoids.

Exercise 1. Refine definition 2.6 so that we do get the same groupoid.
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2.2 Lie Groupoids
Definition 2.7. Let G be a groupoid s.t. �0 ≔ Ob(G) and

�1 ≔

∐
G,H∈Ob(G)

MorG(G, H)

are topological spaces. If

1. B : �1 → �0 mapping a morphism to its source

2. C : �1 → �0 mapping a morphism to its target

3. the composition restricted to {( 5 , 6) ∈ �1 × �1 | B( 5 ) = C(6)} ⊂ �1 × �1

4. D : �0 → �1 given by G ↦→ idG

5. 8 : �1 → �1 mapping a morphism to its inverse

are all continuous we call G a topological groupoid.

Definition 2.8. Let G be a topological groupoid, then the group MorG(G, G) denoted by �G is called the local
isotropy group at G.

Remark. As a subspace of �1 the group �G inherits a subspace topology and is thus a topological group.

Definition 2.9. A Lie groupoid is a topological groupoid where �0 and �1 carry the structure of a smooth

manifold and all the above maps are smooth and B, C are smooth submersions.

Definition 2.10. Let G be a Lie groupoid. It is called

1. proper groupoid if (B, C) : �1 → �0 × �0 is proper.

2. foliation groupoid if �G is discrete for every G ∈ �0.

3. étalé groupoid1 if B and C are local diffeomorphisms.

Definition 2.11. Let G be an étalé groupoid. Then

dim(G) = dim(�1) = dim(�0)

is called the dimension of G.

Corollary 2.2.1. Let G be an étalé groupoid. Then G is a foliation groupoid.

Proof. This follows directly. We note that �G = B
−1(G) ∩ C−1(G). Since B and C are local isomorphisms we get

that �G consists of isolated points, i.e. it carries the discrete topology. �

Corollary 2.2.2. Let G be a proper foliation groupoid, then �G is finite for any G ∈ �0.

Proof. This proof is just a simple. Since G is a foliation groupoid we know that �G is discrete. Because {G}
is compact since �0 is a (smooth) manifold we know that B−1(G) ∩ C−1(G) = �G is compact. A discrete and

compact topological space must be finite, thus �G is finite. �

1In French the verb étaler means to spread out something as in étaler du beurre sur du pain. The term étalé used as an adjective is the

past participle of étaler. Sometimes an étalé groupoid is called an “étale groupoid” in English sources. In my opinion this should be

avoided as an étalé groupoid is a special case of étalé space (espace étalé in French). Étale is actually a different French word that has a

related but different mathematical meaning and is used for morphisms but not for spaces.
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2.3 Orbifold Structures and Orbifolds
Definition 2.12. An orbifold groupoid is a proper foliation groupoid.

Corollary 2.2.3. A proper étalé groupoid is an orbifold groupoid.

However a groupoid is not a topological space and we thus need a further definition.

Definition 2.13. Let G be an orbifold groupoid then

|G| = �0�G ∼ H∀H ∈ C(B−1(G))

is called the orbit space.

Definition 2.14. Let - be a paracompact Hausdorff space and G an orbifold groupoid and 5 : |G| → - be

a homeomorphism. The triple is called an orbifold structure.

And finally we can give the following definition:

Definition 2.15. An orbifold X is a paracompact Hausdorff space with an equivalence class2 of orbifold

structures. A specific structure is called a presentation of X.

We directly get two theorems, which show us that our definition does actually fulfill what wewant based

on our intuition of what an orbifold should be.

Theorem 2.3. Let" be a (smooth) n-manifold. Then we can naturally associate an orbifold structureℳ with it that
makes " into an orbifold.

Proof. Letℳ be the discrete groupoid associatedwith the underlying set of". Then"0 = Ob(ℳ) naturally
is a smooth manifold. By construction there is a bĳection

"1 ≔

∐
G,H∈Ob(ℳ)

Morℳ(G, H) �
∐

G∈Ob(ℳ)
Morℳ(G, G) � "0

thus making "1 into a smooth manifold as well. Then B, C , D, 8 are the identity map and thus smooth. We

still have to look at ◦ restricted to

{( 5 , 6) ∈ "1 ×"1 | B( 5 ) = C(6)} = Δ ⊂ "1 ×"1.

However this is just the projection to either component and thus also smooth. So we have thatℳ is an étalé

groupoid since B and C are diffeomorphisms. Since (B, C) : "1 → "0 ×"0 is just the diagonal map and thus

proper it is actually an orbifold groupoid. We define

5 : |ℳ| → "

using the canonical identification which is a homeomorphism. Thus [ℳ]makes " into an orbifold. �

Now we will encounter a way to get more interesting orbifolds. But first we need a new definition:

Definition 2.16. Let � be a group acting on a set -. The action is called almost free if

{6 ∈ � | 6 • G = G}

is finite for any G ∈ -.

Corollary 2.3.1. Let � be a finite group acting on a set -. Then � acts almost freely.

Corollary 2.3.2. Let � be a discrete topological group acting properly on a topological space3 -. Then � acts almost
freely.

2we don’t have a notion of equivalence for orbifold structures yet, but let’s not quibble, we will get there.

3A space in which {G} is compact for any G ∈ - is enough. And that is always true even if - is not Hausdorff and horrible in a

myriad of other ways. So a topological space is really the correct notion here.
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Sowe see that while the usage of the term almost is in line with its usual usage (i.e. there are only finitely

many exceptions) the condition of an action being almost free is usually trivial in our cases whereas being

free is a quite strong condition.

Theorem 2.4. Let " be a (smooth) n-manifold and � a Lie group acting almost freely and properly on ". Then
�//" defines a natural orbifold structure on "��.

The word Lie group is nice but in many cases not really necessary, as can be seen by these corollaries:

Corollary 2.4.1. Let" be a (smooth) n-manifold and � a discrete group acting properly on". Then �//" defines
a natural orbifold structure on "��.

We will only show this special case.

Proof. Denote - ≔ "�� and X = �//". Then -0 � " and

-1 ≔

∐
G,H∈Ob(X)

MorX(G, H) = � ×".

with B begin the projection to " and C begin the action. This is a Lie groupoid. We now have to check that

it is a proper foliation groupoid. The proper part directly follows from the action of � begin proper. Now

since � acts almost freely we have that �G is finite for any G ∈ " thus we have a foliation groupoid and thus

an orbifold groupoid. Now we further see

|X| � -0�G ∼ H∀H ∈ C(B−1(G)) �
-0�� �

"��.

Thus the canonical identification gives us a homeomorphism 5 : |X| → "��. This defines an orbifold

structure and thus makes
"�� into an orbifold. This concludes our proof. �

Corollary 2.4.2. Let " be a (smooth) n-manifold and � a finite group acting properly on ". Then �//" defines a
natural orbifold structure on "��.

2.4 Equivalence of Orbifold (Structures)
Until now we don’t really know what the term “equivalence class of orbifold structures” really is supposed

to mean. It does not mean the equivalence of categories. Such a notion would not respect our smooth

structures (the infamous axiom of choice can be used easily to come up with counterexamples). The notion

we actually need is called a Morita equivalence.

Definition 2.17. Let G and ℋ be Lie groupoids. A functor � : G → ℋ is called a homomorphism if

�0 : �0 → �0 and �1 : �1 → �1 are smooth.

Definition 2.18. A homomorphism � : G → ℋ of Lie groupoids G andℋ is called an equivalence if

1. C ◦ �2 : {(6, G) ∈ �1 × �0 | B(6) = �(G)} → �0 is a surjective submersion.

2. the diagram

�1

�−−−−−→ �1

(B,C)y (B,C)y
�0 × �0

�×�−−−−−→ �0 × �0

is commutative and �1 together with � and (B, C) is a fibered product4 of smooth manifolds.

Exercise 2. Go through these notes and find the many places where using a fibered product would allow a more elegant
reformulation.

4This is a general notion in categroy theory and not (directly) connected to fiber bundles [Mat].
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We should note that this definition does not look symmetric and that is because it is not. So the name

“equivalence” should be taken with a grain of salt. It is probably best to ignore this definition whenever

possible, but nevertheless it should be given for the sake of completeness. We now introduce a more

symmetric term:

Definition 2.19. Let G ,G′ andℋ be Lie groupoids with equivalences

G ←−−−−− ℋ −−−−−→ G′.

Then G and G′ are called Morita equivalent.

We give the following important result without proof:

Theorem 2.5. A Lie groupoid is a proper foliation groupoid if and only if it is Morita equivalent to a proper étalé
groupoid.

Now we can actually define the term “equivalent orbifold structures”.

Definition 2.20. Two orbifold structures 5 : |G| → - and 6 : |ℋ | → - are called equivalent if there is an

equivalence G → ℋ .

Corollary 2.5.1. Any orbifold has a presentation as a proper étalé groupoid.

Among other things this allows us to define the dimension of an orbifold.

3 Examples
Now we can look at some examples.

Example 3.1. By corollary 2.4.2 our initial example
R3

�Z2

has an orbifold structure induced by R3//Z2.

The next example is the so called Kummmer surface. It is not a surface in the topological sense but it is an

orbifold of dimension 2.

Example 3.2. We define the Z2 action on T4
by

1 • (I1 , I2 , I3 , I4) = (I−1

1
, I−1

2
, I−1

3
, I−1

4
).

Then we have an orbifold

K =
T4

�Z2

� (
1 × (1 × (1 × (1

�Z2

with the structure induced by T4//Z2.

Example 3.3. Consider (2=+1 ⊂ C=+1
and the group action of (1 ⊂ C by

! • (I0 , . . . , I=) = (!00I0 , . . . , !
0= I=)

where 00 , ..., 0= ∈ Z. Then
,P(00 , . . . , 0=) ≔ (2=+1

�(1

is an orbifold called the weighted projective space.

Example 3.4. The orbifold,P(1, 0) is called a teardrop orbifold.
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4 Outlook
Withmore time than 90minutes a lot of structures could be established on orbifolds. The presented algebraic

approach makes this straight forward in many cases. The list of such structures includes (but is not limited

to):

• The Euler characteristic

• Homology and Cohomology

• Fundamental groups

• Bundles over orbifolds

The theory can also be extended to a functional analytic setting giving rise to so called polyfolds [HWZ17].

5 Further Reading
If you are interested in the historical definition of an orbifold the original paper by Satake is very useful.

The more geometric approach is given beautifully in chapter 13 of Thurston’s book:

[Sat56] I. Satake. “On a Generalization of the Notion of Manifold”. eng. In: Proceedings of the National
Academy of Sciences - PNAS 42.6 (1956), pp. 359–363. issn: 0027-8424.

[Thu02] William Thurston. Geometry and topology of three-manifolds. 2002. url: http://library.msri.
org/books/gt3m/.

More information on the (Lie) groupoid approach can be found in the (short) introduction by Moerdĳk.

A lot more information (in particular concerning applications in string theory) can be found in the book by

Aden et al.:

[ALR07] Alejandro Adem, Johann Leida, and Yongbin Ruan. Orbifolds and Stringy Topology. eng. Vol. 171.
Cambridge tracts inmathematics.Cambridge:CambridgeUniversityPress, 2007. isbn: 0521870046.

[Moe02] IekeMoerdĳk. “Orbifolds as groupoids: an introduction”. In:Orbifolds in mathematics and physics
(Madison, WI, 2001). Vol. 310. Contemp. Math. Amer. Math. Soc., Providence, RI, 2002, pp. 205–

222. doi: 10.1090/conm/310/05405.

More generally a book I like on category theory is the following:

[Rie16] Emily Riehl. Category Theory in Context. Aurora: Dover Modern Math Originals. Dover Publica-

tions, 2016. url: https://math.jhu.edu/~eriehl/context.pdf.
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